Principal Investigator
Dr Ines Barroso

Address
Wellcome Trust Sanger Institute, Human Genetics, Wellcome Trust Genome Campus, Hinxton CB10 1SA, United Kingdom

Lead Collaborators:
Dr Robert Scott
Professor Naveed Sattar
Professor Paul Elliott
Professor Andrew Morris
Professor Mark McCarthy

Collaborating Institutions and Addresses:
University of Cambridge, MRC Epidemiology Unit, Box 285 Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom

University of Glasgow, Cardiovascular and Medical Sciences, 126 University Place, Glasgow G12 8TA, United Kingdom

Imperial College London, Epidemiology and Biostatistics, School of Public Health, St Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom

University of Liverpool, Department of Biostatistics, Duncan Building, Daulby Street, Liverpool L69 3GA, United Kingdom

University of Oxford, OCDEM, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom

Summary of research
HbA1c, Diabetes, Cardiovascular Disease
Application Lay Summary:

1a: This proposal seeks access to UKBiobank data to support identification of genetic variants underlying glycated haemoglobin (HbA1c) variation, to empower biological pathway discovery, and to elucidate the impact of loci influencing HbA1c on its utility as a diagnostic measure for type 2 diabetes, and on cardiovascular disease risk.

The applicants are part of the UK Biobank Cardiometabolic Consortium, and are world-leaders in the genetics of type 2 diabetes (T2D) and related traits. They have played leading roles in global genetic discovery efforts for these phenotypes and the UKBiobank data offers many opportunities to strengthen and extend these research activities.

1b: The research we plan is entirely congruent with the stated aim of UK Biobank to improve "the prevention, diagnosis and treatment of a wide range of serious and life-threatening illnesses"

HbA1c is a diagnostic measure for diabetes. Both diabetes and heart disease are listed as target conditions for UK Biobank.

1c: Glycated haemoglobin (HbA1c) is used to measure glucose control, and to diagnose diabetes. We will: a) search for genetic variants associated with HbA1c in non-diabetic participants at the start of the study (baseline); b) integrate these data with other studies to extend the list of genetic variants influencing HbA1c and identify biological pathways; c) investigate the effect of variants in those with baseline type 2 diabetes, and in new diabetes cases as they emerge, and explore whether variants can predict diabetes onset, progression or response to treatment; c) investigate whether genetic variants are associated with cardiovascular disease risk.
1d: We wish to study the full cohort.