Physical Activity

Soren Brage & Aiden Doherty

on behalf of the Biobank Accelerometry Working Group
Physical Activity and all-cause mortality

EPIC-Europe; n=500,000, >20,000 deaths

Calibration study; n=2000

Ekelund et al, AJCN 2015

“20 min/day brisk walking lowers mortality by 25%”
A new era for Physical Activity Epidemiology

<table>
<thead>
<tr>
<th>Year</th>
<th>Ecological studies</th>
<th>Moderate sized prospective cohort studies establishing association with major disease outcomes</th>
<th>Large prospective cohort studies establishing association with rarer disease outcomes using simple global indices of PA</th>
<th>Smaller studies with detailed measures establishing dose-response relationships with quantitative traits</th>
<th>Large prospective cohort studies with detailed measures establishing dose-response relationships with disease outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td>Moderate sized prospective cohort studies establishing association with major disease outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td>Large prospective cohort studies establishing association with rarer disease outcomes using simple global indices of PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td>Smaller studies with detailed measures establishing dose-response relationships with quantitative traits</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large prospective cohort studies with detailed measures establishing dose-response relationships with disease outcomes</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biobank physical activity data processing

Define scientific need for measurement → Determine approach to measurement → Undertake measurement → Process and store source data → Derive summary information from source data → Release summary information alongside other data releases for epidemiological analysis

3 axes and 3 components
- Activity
- Gravity
- Noise
Response rate

- 240,000 invited
- 106,053 consented (44.2%)
- 103,720 datasets received (97.8%)

Wear time analysis

- 103,586 for wear time analysis (99.9%)

Physical activity analysis

- 96,608 for physical activity analysis (93.3%)

Reasons for data loss

- 1,350 declined
- 132,597 no response
- 2,333 datasets lost
 - 87 subsequent participant withdrawals
 - 1,316 devices not returned
 - 930 datasets unreadable
- 123 aged <45yrs at time of wear
- 11 datasets not calibrated
 - 8 with no other successful uses of device
 - 3 with >1% of values 'clipped' before/after calibration
 - 3,049 participants with insufficient stationary data
 - 2,887 re-calibrated using previous device use
 - 154 re-calibrated using next device use
- 6,978 insufficient wear time
 - < 72hrs wear
 - data missing in at least one-hour period of the 24-hour cycle
I. Raw measurement and data storage

Triaxial acceleration waveform (~100Hz)
- Uncalibrated signal
- Variable sampling frequency
- Potentially interrupted signal
- Page level: Clock, temperature, interrupts

II. Post-processing
- Sensor calibration to local gravity
 - within-record (or closest)
- Time-stamping and resampling
- Filtering of machine noise (>20Hz)
- Identification of non-worn time

III. Feature extraction
- e.g. mean magnitude, standard deviation, pitch, roll
- power spectra, wavelets, pattern matching

IV. Prediction
- e.g. whole-body movement intensity, activity type, PAEE
Accelerometer calibration to local gravity

Table 4. Impact of autocalibration on daily wrist acceleration calculated with metric ENMO

<table>
<thead>
<tr>
<th>Cohort/Metric</th>
<th>C₀</th>
<th>C₁</th>
<th>C₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily average</td>
<td>34.4 (8.4)</td>
<td>31.8 (11.8)</td>
<td>31.3 (8.3)</td>
</tr>
<tr>
<td>P5</td>
<td>6.2 (6.9)</td>
<td>4.5 (1.7)</td>
<td>3.6 (1.8)</td>
</tr>
<tr>
<td>P25</td>
<td>13.7 (9.9)</td>
<td>9.4 (3.3)</td>
<td>7.7 (3.5)</td>
</tr>
<tr>
<td>P50</td>
<td>27.1 (11.6)</td>
<td>24 (7.4)</td>
<td>23.7 (7.6)</td>
</tr>
<tr>
<td>P75</td>
<td>46.4 (14.8)</td>
<td>44.5 (12.2)</td>
<td>44.6 (12.3)</td>
</tr>
<tr>
<td>P95</td>
<td>87.4 (29.6)</td>
<td>86.1 (28.4)</td>
<td>86.5 (28.4)</td>
</tr>
<tr>
<td>P97.92</td>
<td>113.9 (49)</td>
<td>112.7 (48)</td>
<td>113 (48)</td>
</tr>
<tr>
<td>Kuwait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily average</td>
<td>28.6 (8.1)</td>
<td>24.6 (9.3)</td>
<td>24.5 (8.1)</td>
</tr>
<tr>
<td>P5</td>
<td>5.7 (4.2)</td>
<td>2.8 (1.0)</td>
<td>2.7 (0.9)</td>
</tr>
<tr>
<td>P25</td>
<td>12 (6.2)</td>
<td>6.3 (2.6)</td>
<td>6.1 (2.6)</td>
</tr>
<tr>
<td>P50</td>
<td>21.6 (7.8)</td>
<td>17.3 (6.1)</td>
<td>17.3 (6.1)</td>
</tr>
<tr>
<td>P75</td>
<td>36.4 (11.5)</td>
<td>33.2 (10.6)</td>
<td>33.2 (10.6)</td>
</tr>
<tr>
<td>P95</td>
<td>74.4 (36)</td>
<td>72.2 (35.9)</td>
<td>72.1 (36.0)</td>
</tr>
<tr>
<td>P97.92</td>
<td>100.9 (66.4)</td>
<td>99 (66.5)</td>
<td>98.9 (66.6)</td>
</tr>
<tr>
<td>Cameroon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily average</td>
<td>53.3 (16.4)</td>
<td>34.5 (18.8)</td>
<td>34.5 (16.4)</td>
</tr>
<tr>
<td>P5</td>
<td>18.1 (8.5)</td>
<td>3.6 (0.9)</td>
<td>3.5 (0.9)</td>
</tr>
<tr>
<td>P25</td>
<td>32.4 (11.1)</td>
<td>8.4 (3.6)</td>
<td>8.3 (3.7)</td>
</tr>
<tr>
<td>P50</td>
<td>45.9 (12.4)</td>
<td>25.3 (7.5)</td>
<td>25.3 (7.6)</td>
</tr>
<tr>
<td>P75</td>
<td>65.8 (29.3)</td>
<td>48.8 (28.6)</td>
<td>48.8 (28.5)</td>
</tr>
<tr>
<td>P95</td>
<td>112.8 (71.6)</td>
<td>98.9 (72.4)</td>
<td>99 (72.3)</td>
</tr>
<tr>
<td>P97.92</td>
<td>143.7 (93.1)</td>
<td>130.7 (93.6)</td>
<td>130.7 (93.6)</td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily average</td>
<td>80.6 (12.5)</td>
<td>39.7 (19.7)</td>
<td>39.5 (12.4)</td>
</tr>
<tr>
<td>P5</td>
<td>33.6 (15.3)</td>
<td>4.6 (1.7)</td>
<td>3.7 (1.6)</td>
</tr>
<tr>
<td>P25</td>
<td>55.2 (18.6)</td>
<td>11.6 (5.4)</td>
<td>10.4 (5.5)</td>
</tr>
<tr>
<td>P50</td>
<td>74.2 (19.7)</td>
<td>29 (10.7)</td>
<td>28.8 (11.0)</td>
</tr>
<tr>
<td>P75</td>
<td>96.6 (22.5)</td>
<td>54.3 (17.4)</td>
<td>54.7 (17.8)</td>
</tr>
<tr>
<td>P95</td>
<td>148.5 (37.7)</td>
<td>111.1 (37.5)</td>
<td>111.8 (37.4)</td>
</tr>
<tr>
<td>P97.92</td>
<td>183.4 (55)</td>
<td>147.7 (55.7)</td>
<td>148.5 (55.7)</td>
</tr>
</tbody>
</table>

Van Hees et al, JAP 2014
Accelerometer calibration to local gravity

<table>
<thead>
<tr>
<th>Country</th>
<th>Un-calibrated Mean (sd)</th>
<th>Gravity-calibrated Mean (sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>34.4 (8.4)</td>
<td>31.8 (11.8)</td>
</tr>
<tr>
<td>Kuwait</td>
<td>28.6 (8.1)</td>
<td>24.6 (9.3)</td>
</tr>
<tr>
<td>Cameroon</td>
<td>53.3 (16.4)</td>
<td>34.5 (18.8)</td>
</tr>
<tr>
<td>Brazil</td>
<td>80.6 (12.5)</td>
<td>39.7 (19.7)</td>
</tr>
</tbody>
</table>

Van Hees et al, JAP 2014
Non-wear detection: 10-sec SD of all 3 axes
Wear compliance by age, sex and hour of day

Doherty et al., in review
Diurnal information bias: Missingness simulation
Comparison with other measures of activity

Validity
Vector magnitude $\sim AEE_{DLW}$ (n=63 Swedish women, left or right wrist) : $r=0.61$
Vector magnitude $\sim AEE_{Acc+Hr}$ (n=2000 UK adults, non-dominant wrist) : $r=0.66$

Van Hees et al 2013, 2014; White et al (in prep)
Further UK validation work (preliminary results)

Non-dominant vs dominant wrist acceleration

Wrist acc vs PAEE (dlw, n=16)

\[R^2 \sim 80\% \]

White et al (in preparation)
Average vector magnitude by age and sex

![Bar chart showing mean acceleration (mg) by age group and sex, with error bars. The chart includes data for age groups 45-54, 55-64, 65-74, and 75-79 years, distinguishing between female and male outcomes.]
Average vector magnitude by age, sex and hour of day

Female

- 4am: 10 mg
- 8am: 15 mg
- 12pm: 20 mg
- 4pm: 25 mg
- 8pm: 30 mg

Male

- 4am: 10 mg
- 8am: 15 mg
- 12pm: 20 mg
- 4pm: 25 mg
- 8pm: 30 mg

Age Groups

- 45-54 yrs: 20 mg
- 55-64 yrs: 25 mg
- 65-74 yrs: 30 mg
- 75-79 yrs: 35 mg

Doherty et al, in review
Movement intensity distribution by age and sex

Doherty et al, in review
Associations with weight status

Kim et al, in prep
Summary

- Consensus summary variables available in the data showcase
 - Use as
 - *exposures*
 - *confounding control*
 - *mediators*
 - *outcomes*
 - Post-processed signal data also available (as bulk)
 - e.g. for further inference work
 - Raw binary data also available (as bulk)
Biobank Accelerometry Working Group

Nicholas Wareham (chair)
Aiden Doherty
Dan Jackson
Nils Hammerla
Thomas Plötz
Patrick Olivier
Stephen Preece
Malcolm Granat
Christopher Owen

Rob Gillions
Simon Sheard
Tim Peakman
Michael Trenell
Tom White
Vincent van Hees
Soren Brage