Approved research
Application of Imiomics to whole-body MRI data for creation and application of a human imaging atlas
Approved Research ID: 14237
Approval date: September 10th 2018
Lay summary
We are facing a global epidemic of obesity and related cardiovascular complications. This calls for novel intervention strategies where improved understanding of the underlying mechanisms is key. Both total fat mass and its distribution throughout the body have been linked to development of cardiovascular disease. Whole-body medical imaging using magnetic resonance (MRI) can sample anatomical information such as tissue volume and fat content, i.e. parameters relevant for cardiovascular studies, at the millimetre scale using millions of small 3D-elements (voxels). We have developed and validated a novel technology, Imiomics, which enables whole body voxel-wise correlations with non-imaging data, e.g. genotypes and disease phenotypes. Imiomics thereby allows innovative types of whole body composition studies. During the Imiomics analysis, whole-body images are registered/deformed to a common coordinate system/geometry. This allows statistical analysis, in the whole-body region, such as creation of a `mean person` (atlas) and studies of deviations from that mean person. This also allows integration of imaging and non-imaging data as whole-body `correlation- images` to for example blood parameters can be made. The aim of this project is to determine causes and consequences of variation in human body composition. This goal will be achieved by 1) applying Imiomics to build a Human Imaging Atlas using whole-body imaging data from large-scale cohort studies 2) genome-wide body-wide studies of body composition 3) assessment of the association of body composition with cardiovascular disease, including ischemic stroke and myocardial infarction and cardiovascular risk factors, including type 2 diabetes, hypertension, and dyslipidemia 4) Mendelian Randomization studies of causal effects. This interdisciplinary project addresses several fundamental questions related to causes and consequences of variation in body composition. This will improve our understanding of the underlying mechanisms of cardiovascular disorders and accelerate development of prevention, diagnosis and treatments for cardiovascular complications. Furthermore, the resources created by this project are anticipated to open up new avenues for research within the obesity-field.
Scope extension:
The overall aim of this project is to determine causes and consequences of variation in human body composition.
The project has following specific aims:
1) To create a whole-body human imaging atlas
2) To study the effect of aging on the whole-body MRI data
3) To study the association between cardiometabolic risk factors, like diabetes, hypertension, smoking, dyslipidemia, and the whole-body MRI data, controlling for effects of aging.
4) To perform genome-wide body-wide studies of body composition, to study how our genes determines differences in body composition.
5) To perform Mendelian Randomization studies of causal effects.
Scope extension:
3b) To include to specific aim 3 above also associations to diet and studies of explicit assessments of individual organs and tissues from these images, with and without controlling for effects of aging.
6) To study if the whole-body image data can be used to also identify subtypes of diseases (including type 2 diabetes, and chronic kidney disease)
Scope extension 2:
7) To study the association between the whole-body MRI data and prevalent and incident cardiometabolic disease and cancer.
8) To integrate the results from the whole-body MRI analysis to results from similar detailed analysis of the cardiac MRI structural and functional data.
9) To study the clinical relevance of the similar detailed analysis of the cardiac MRI structural and functional data and its association to prevalent and incident cardiometabolic disease.