Skip to navigation Skip to main content Skip to footer

Approved Research

Assessment of frailty and biological age using multi-modal deep learning

Principal Investigator: Professor Daniel Rueckert
Approved Research ID: 87802
Approval date: July 21st 2022

Lay summary

Over the next 3 years, we will attempt to develop an artificial intelligence solution that will predict the biological age of a patient's organs. This model will take into account a subject's genetic and lifestyle information and analyse the images of the target organ to make its prediction. A large part of the research will be concerned with how best to combine these disparate data sources for maximum performance.

We hold this to be a promising and impactful pursuit due to the effect biological age has on a patient's disease risk and response to medical interventions. It is crucial for doctors to understand how healthy a patient's organs are when considering a diagnosis and also before recommending certain interventions due to the variable risk of complications.

We know that lifestyle and genetics are what define our biological state, and thus we expect that combining this information with images of the organ of interest will allow us to make the best and most informed prediction possible. Furthermore, by analysing which parts of the input contributed most to our prediction, we can begin to understand the causal roots of biological-chronological age gaps.