Last updated:
Author(s):
Yuzhuo Ma, Yanlong Zhao, Ji-Feng Zhang, Wenjian Bi
Publish date:
29 March 2025
Journal:
Nature Communications
PubMed ID:
40157913

Abstract

Gene-environment interaction (G×E) analysis elucidates the interplay between genetic and environmental factors. Genome-wide association studies (GWAS) have expanded to encompass complex traits like time-to-event and ordinal traits, which provide richer phenotypic information. However, most existing scalable approaches focus only on quantitative or binary traits. Here we propose SPAGxECCT, a scalable and accurate framework for diverse trait types. SPAGxECCT fits a genotype-independent model and employs a hybrid strategy including saddlepoint approximation (SPA) for accurate p value calculation, especially for low-frequency variants and unbalanced phenotypic distributions. We extend SPAGxECCT to SPAGxEmixCCT, which accounts for population stratification and is applicable to multi-ancestry or admixed populations. SPAGxEmixCCT can further be extended to SPAGxEmixCCT-local, which identifies ancestry-specific G×E effects using local ancestry. Through extensive simulations and real data analyses of UK Biobank data, we demonstrate that SPAGxECCT and SPAGxEmixCCT are scalable to analyze large-scale study cohort, control type I error rates effectively, and maintain power.

Related projects

With the advances in genotyping technologies and electronic health records (EHRs), large biobanks have been great resources to identify novel genetic associations and gene-environment interactions…

Institution:
Peking University, China

All projects